
Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Distributed, virtual and real debugging of a
MIPS SoC

Martin Strubel
section5.ch

02/2013

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Flight plan

1 Debugging a complex FPGA design (in theory)

� A SoC (System on Chip) example
� MAIS : A portable MIPS soft core by René Doss
� The Test Access Port (TAP): A generic debug interface

2 Virtualizing the hardware

� ’Model in the loop’ techniques
� Making real software speak to virtual hardware

3 Demos

� Debugging the virtual chip
� Debugging the real hardware

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

The challenge

Debug this:

Figure: Somewhat unreadable schematic

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Divide et impera

Figure: Simplified SoC schematic with Debug port

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Existing solutions

Proprietary solutions from various FPGA vendors:

Signal inspection tool Soft CPU core Vendor

ChipScope microblaze Xilinx

Reveal mico32 Lattice

SignalTap NiosII Altera

Table: Tool examples

� Virtualization capabilities depend on second party
simulation tools ($$$-$$$$$)

� Debug port itself can sometimes not be simulated

� No easy DIY virtualization of the hardware due to
proprietary and closed libraries.

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Existing solutions

Proprietary solutions from various FPGA vendors:

Signal inspection tool Soft CPU core Vendor

ChipScope microblaze Xilinx

Reveal mico32 Lattice

SignalTap NiosII Altera

Table: Tool examples

� Virtualization capabilities depend on second party
simulation tools ($$$-$$$$$)

� Debug port itself can sometimes not be simulated

� No easy DIY virtualization of the hardware due to
proprietary and closed libraries.

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

The MIPS-compatible MAIS CPU

Introducing a soft cpu core may speed up proto-
typing/debugging.

(exercised previously with ZPU soft core)

Why MIPS?

� Well-established architecture with many derivatives
(Loongson SoC, Router chipsets)

� Fast, easy to implement, resource saving

� Actively maintained tool chain and emulators

� MAIS design by René Doß:

� Well-portable MIPS 32 bit implementation
� Access to VHDL sources

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

The MIPS-compatible MAIS CPU

Introducing a soft cpu core may speed up proto-
typing/debugging.

(exercised previously with ZPU soft core)

Why MIPS?

� Well-established architecture with many derivatives
(Loongson SoC, Router chipsets)

� Fast, easy to implement, resource saving

� Actively maintained tool chain and emulators

� MAIS design by René Doß:

� Well-portable MIPS 32 bit implementation
� Access to VHDL sources

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

In Circuit Emulation (ICE)

In emulation mode, the CPU...

� takes opcodes from the EMUIR register

� executes them when it gets an emuexec pulse

� exchanges data with the debugger via the EMUDATA
register

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

In Circuit Emulation (ICE)

In emulation mode, the CPU...

� takes opcodes from the EMUIR register

� executes them when it gets an emuexec pulse

� exchanges data with the debugger via the EMUDATA
register

Full remote control of the CPU via a test access port (TAP)!

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Debugger components

1 The developer’s front end:
The GNU debugger (gdb)

2 The back ends:

1 uniproxy: a JTAG
debug server

2 qemu: a MIPS CPU
emulator

3 JTAG debugger hardware:
USB JTAG adapter

Figure: GDB

Debugger connects to back end via a TCP remote debugging
protocol. Means: Distributed across networks!

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Debugger components

1 The developer’s front end:
The GNU debugger (gdb)

2 The back ends:

1 uniproxy: a JTAG
debug server

2 qemu: a MIPS CPU
emulator

3 JTAG debugger hardware:
USB JTAG adapter

Figure: GDB and uniproxy

Debugger connects to back end via a TCP remote debugging
protocol. Means: Distributed across networks!

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Debugger components

1 The developer’s front end:
The GNU debugger (gdb)

2 The back ends:

1 uniproxy: a JTAG
debug server

2 qemu: a MIPS CPU
emulator

3 JTAG debugger hardware:
USB JTAG adapter Figure: ICEbear JTAG adapter

Debugger connects to back end via a TCP remote debugging
protocol. Means: Distributed across networks!

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Virtualize the hardware

� qemu: software-emulated MIPS CPU – a functional
model

� Write C code to functionally emulate attached hardware

� VHDL simulation: cycle accurate – a timing model

� Typically: Simulation of logical behaviour
� Somewhat precise waveform output

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Virtualize the hardware

� qemu: software-emulated MIPS CPU – a functional
model

� Write C code to functionally emulate attached hardware

� VHDL simulation: cycle accurate – a timing model

� Typically: Simulation of logical behaviour
� Somewhat precise waveform output

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Virtualize the hardware

� qemu: software-emulated MIPS CPU – a functional
model

� Write C code to functionally emulate attached hardware

� VHDL simulation: cycle accurate – a timing model
� Typically: Simulation of logical behaviour
� Somewhat precise waveform output

Figure: Timing accurate simulation

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Make ants meet

Make antz meet...

Drawing by Britta Schneider

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Now seriously: make ends meet

Task: Make real world software speak to virtual hardware.

Result: ghdlex OpenSource
simulator extension library:

� Describe virtual board in
XML −→

� Attach virtual components
in HDL design:

� JTAG debugger
� shared RAM
� USB FIFO
� I/O pins, registers

Figure: XML hardware description

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Virtual Hardware

VHDL-Simulation,

unit under test

netpp.vpi

netpp client

Virtual hardware

driver

ghdlex library

JTAG processor

(VHDL)

Virtual

USB-FIFO

Virtual

JTAG debugger

Virtual pins Virtual RAM

User program

GNU debugger

Virtual Hardware Client/Driver Software

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Virtual Hardware

VHDL-Simulation,

unit under test

netpp.vpi

netpp client

Virtual hardware

driver

ghdlex library

JTAG processor

(VHDL)

Virtual

USB-FIFO

Virtual

JTAG debugger

Virtual pins Virtual RAM

User program

GNU debugger

Virtual Hardware Client/Driver Software

Expose design components to the network!

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Distributed processing

Simulation

Windows PC,

Driver software

Camera

(Data acquisition)

Developer,

Debugger front end

Embedded device

JTAG

ghdlex speaks netpp (network property protocol), therefore
things can run anywhere.

� HDL-Simulation on powerful main frame

� Data routing from real world software on Windows PC to
simulation

� Debugger (Laptop) connecting to any of the debug servers

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Now, where’s the bug?

� Bug could sit:

� .. in peripheral access (HDL design), or the CPU
� .. in SoC firmware (Code running on CPU core)
� .. in host (PC) software

� .. in Debugger components itself (reserve many gaelic curses)

� .. between two human ears

� Avoid to introduce bugs during development:

� Verify CPU behaviour against qemu (functional
simulation)

� Keep device configuration in exactly one XML file
� Use Makefile rules or similar to keep source and generated

files in sync (→ GNU make)
� Introduce detection mechanisms: ID codes or functionality

descriptors (JTAG USERCODE register)

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Now, where’s the bug?

� Bug could sit:

� .. in peripheral access (HDL design), or the CPU
� .. in SoC firmware (Code running on CPU core)
� .. in host (PC) software
� .. in Debugger components itself (reserve many gaelic curses)

� .. between two human ears

� Avoid to introduce bugs during development:

� Verify CPU behaviour against qemu (functional
simulation)

� Keep device configuration in exactly one XML file
� Use Makefile rules or similar to keep source and generated

files in sync (→ GNU make)
� Introduce detection mechanisms: ID codes or functionality

descriptors (JTAG USERCODE register)

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Now, where’s the bug?

� Bug could sit:

� .. in peripheral access (HDL design), or the CPU
� .. in SoC firmware (Code running on CPU core)
� .. in host (PC) software
� .. in Debugger components itself (reserve many gaelic curses)

� .. between two human ears

� Avoid to introduce bugs during development:

� Verify CPU behaviour against qemu (functional
simulation)

� Keep device configuration in exactly one XML file
� Use Makefile rules or similar to keep source and generated

files in sync (→ GNU make)
� Introduce detection mechanisms: ID codes or functionality

descriptors (JTAG USERCODE register)

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Hands on!

Demos:

1 Debugging the simulation

2 Debugging the hardware: HDR-60 FPGA camera kit

3 Verifying the CPU using qemu

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Hardware Test Bench

32 bit CPU core

L1 instr
Bank A/B

L1 data
Bank A

L1 data
Bank B

L1 cache
Bank C

32 bit bus

32 bit instruction bus

Core Event ControllerSMMU

FliX DSP
JPEG encoder

USB
FIFO
(FX2)

MUX
FIFO

16 bit DMA

Control bus (MMR)

DMA Controller

isochronous
USB EP (in)

FPGA

Figure: JPEG encoder test bench

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

Final notes

� Questions?

� More about device hardware XML description:
→ http://www.section5.ch/netpp

� Don’t miss René’s Introduction to his Mais MIPS core
(later today in this session)

Thank you for listening!

http://www.section5.ch/netpp

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

StdTAP: The ’standard test access port’

The interface between the JTAG port and the CPU: a
somewhat generic HDL library.

� Vendor independent interface (’standard’ register set)

� Supports Xilinx and Lattice native JTAG components

� CPU core architecture independent

� Software support by emulation library (Python, uniproxy
debug server)

Distributed,
virtual and

real debugging
of a MIPS

SoC

Martin Strubel
section5.ch

TAP registers

Register Description Signals

EMUSTAT ICE and CPU state emuack, emurdy, state

EMUCTRL ICE control emurequest, (emuexec)

EMUIR ICE instruction register 32 bit (to core)

EMUDATA ICE data register 32 bit (from core)

Table: TAP registers

Actual register addressing is TAP (FPGA family)
specific

