Martin Strubel section5.ch

Distributed, virtual and real debugging of a MIPS SoC

Martin Strubel section5.ch

02/2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Distributed, virtual and real debugging of a MIPS SoC

Martin Strubel section5.ch

1 Debugging a complex FPGA design (in theory)

- A SoC (System on Chip) example
- MAIS: A portable MIPS soft core by René Doss
- The Test Access Port (TAP): A generic debug interface

Ø Virtualizing the hardware

- 'Model in the loop' techniques
- Making real software speak to virtual hardware

8 Demos

- Debugging the virtual chip
- Debugging the real hardware



Figure: Somewhat unreadable schematic

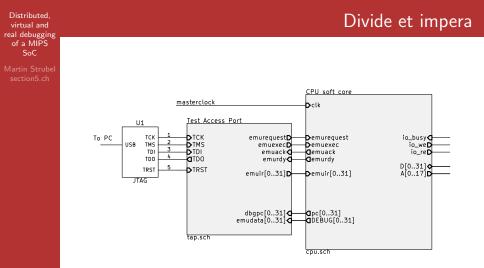


Figure: Simplified SoC schematic with Debug port

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Existing solutions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Distributed, virtual and real debugging of a MIPS SoC

Martin Strubel section5.ch Proprietary solutions from various FPGA vendors:

Signal inspection tool	Soft CPU core	Vendor
ChipScope	microblaze	Xilinx
Reveal	mico32	Lattice
SignalTap	NiosII	Altera

Table: Tool examples

- Virtualization capabilities depend on second party simulation tools (\$\$\$-\$\$\$\$\$)
- Debug port itself can sometimes not be simulated

Existing solutions

Distributed, virtual and real debugging of a MIPS SoC

Martin Strubel section5.ch Proprietary solutions from various FPGA vendors:

Signal inspection tool	Soft CPU core	Vendor
ChipScope	microblaze	Xilinx
Reveal	mico32	Lattice
SignalTap	NiosII	Altera

Table: Tool examples

- Virtualization capabilities depend on second party simulation tools (\$\$\$-\$\$\$\$\$)
- Debug port itself can sometimes not be simulated
- No easy DIY virtualization of the hardware due to proprietary and closed libraries.

Martin Strube section5.ch

Introducing a soft cpu core **may** speed up prototyping/debugging.

(exercised previously with ZPU soft core)

Why MIPS?

- Well-established architecture with many derivatives (Loongson SoC, Router chipsets)
- Fast, easy to implement, resource saving
- Actively maintained tool chain and emulators

The MIPS-compatible MAIS CPU

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Martin Strube section5.ch The MIPS-compatible MAIS CPU

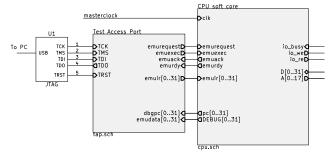
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introducing a soft cpu core **may** speed up prototyping/debugging.

(exercised previously with ZPU soft core)

Why MIPS?

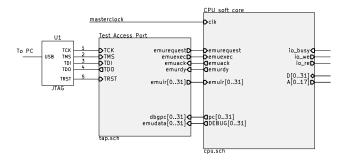
- Well-established architecture with many derivatives (Loongson SoC, Router chipsets)
- Fast, easy to implement, resource saving
- Actively maintained tool chain and emulators
- MAIS design by René Doß:
 - Well-portable MIPS 32 bit implementation
 - Access to VHDL sources


In Circuit Emulation (ICE)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

SoC Martin Strube section5.ch

Distributed.


virtual and real debugging of a MIPS

In emulation mode, the CPU...

- takes opcodes from the EMUIR register
- executes them when it gets an emuexec pulse
- exchanges data with the debugger via the EMUDATA register

In Circuit Emulation (ICE)

In emulation mode, the CPU...

Distributed.

virtual and real debugging of a MIPS SoC

- takes opcodes from the EMUIR register
- executes them when it gets an emuexec pulse
- exchanges data with the debugger via the EMUDATA register

Full remote control of the CPU via a test access port (TAP)!

Debugger components

Distributed, virtual and real debugging of a MIPS SoC

Martin Strubel section5.ch

> The developer's front end: The GNU debugger (gdb)

Figure: GDB

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Debugger connects to back end via a TCP remote debugging protocol. Means: Distributed across networks!

Debugger components

Distributed, virtual and real debugging of a MIPS SoC

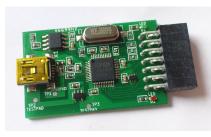
Martin Strubel section5.ch

- The developer's front end: The GNU debugger (gdb)
- 2 The back ends:
 - uniproxy: a JTAG debug server
 - emu: a MIPS CPU emulator

Ele Ban Yew Control Preferences Help	
🐐 19 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18	🛔 +2 🕮 Find: 🔤 🚽
main.c 💌 main 💌	SOURCE V
00 MARC	_BWIER;
121 Hendlif Program not running. Click on run icon to start.	(Fac052) 114
PAN EST. Yoo Winner Internet and the set of the set of the temperature of the set of the set of the temperature of the set of the	pt //greary main A appright (0: 2009 doublety doarwat Stee, 2012 and ANTER (12: 2012 by www.sattlands.ch /mater.cptc: 00 /mater.cptc: 00 /mater.cptc: 00 jstg.com/fig in not supported
	-

Figure: GDB and uniproxy

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○


Debugger connects to back end via a TCP remote debugging protocol. Means: Distributed across networks!

Debugger components

Distributed, virtual and real debugging of a MIPS SoC

Martin Strubel section5.ch

- The developer's front end: The GNU debugger (gdb)
- 2 The back ends:
 - uniproxy: a JTAG debug server
 - emu: a MIPS CPU emulator
- ITAG debugger hardware: USB JTAG adapter

Figure: ICEbear JTAG adapter

Debugger connects to back end via a TCP remote debugging protocol. Means: Distributed across networks!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - わへぐ

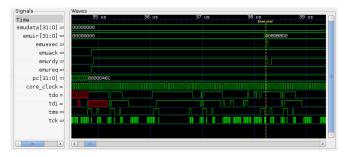
Distributed, virtual and real debugging of a MIPS SoC

- qemu: software-emulated MIPS CPU a functional model
 - Write C code to functionally emulate attached hardware

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Distributed, virtual and real debugging of a MIPS SoC

- qemu: software-emulated MIPS CPU a functional model
 - Write C code to functionally emulate attached hardware
- VHDL simulation: cycle accurate a timing model
 - Typically: Simulation of logical behaviour
 - Somewhat precise waveform output

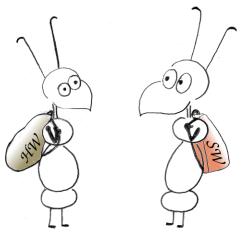

Virtualize the hardware

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Distributed, virtual and real debugging of a MIPS SoC

Martin Strubel section5.ch

- VHDL simulation: cycle accurate a timing model
 - Typically: Simulation of logical behaviour
 - Somewhat precise waveform output


Figure: Timing accurate simulation

Make ants meet

Distributed, virtual and real debugging of a MIPS SoC

Martin Strubel section5.ch

Make antz meet...

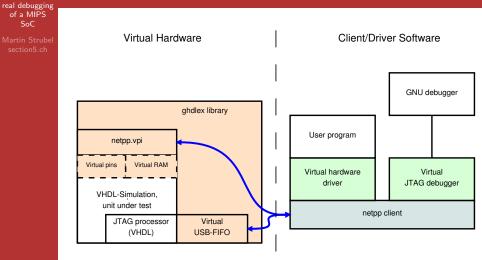
Drawing by Britta Schneider

Now seriously: make ends meet

Distributed, virtual and real debugging of a MIPS SoC

Martin Strubel section5.ch

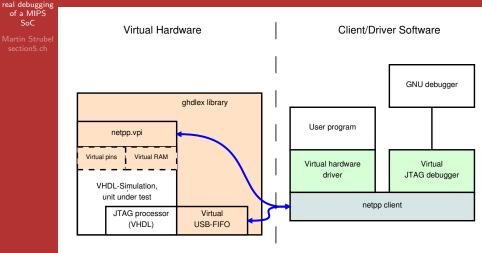
Task: Make real world software speak to virtual hardware.


Result: **ghdlex** *OpenSource* simulator extension library:

- Describe virtual board in $XML \longrightarrow$
- Attach virtual components in HDL design:
 - JTAG debugger
 - shared RAM
 - USB FIFO
 - I/O pins, registers

🗢 device	GHDLSimInterface ♂ ↔ \$ +> ↔ x +			
id	ghdlsim			
name	GHDLSimInterface			
protocol	○ REGISTER ● PROPERTY ○ COMMAND			
▶ revision ♂ ↔ \$ +> ↑ ×				
A (virtual) register map:				
▶ registermap FPGA_Registers ♂ ↔ \$ +> → X +				
🗕 group) VirtualPins ♂⇔\$ + ↔ × +			
name VirtualPins				
▶ property Enable ♂ ↔ \$ +> ↑ X +				
▶ property Reset ♂ ↔ \$ +> ○ X +				
▶ property Timeout ♂ ↔ \$ ↔ > X +				
▶ property Throttle ♂ ↔ \$ → > X +				
▶ property Irq → ↔ ⇒ → → × +				
group VirtualJTAG				
name VirtualJTAG				
▶ struct Fifo ♂ ↔ \$ +> > x +				

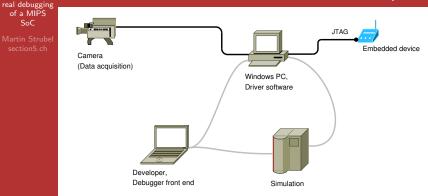
Figure: XML hardware description


Virtual Hardware

Distributed.

virtual and

Virtual Hardware


Expose design components to the network!

Distributed.

virtual and

SoC

Distributed processing

Distributed.

virtual and

of a MIPS SoC

> **ghdlex** speaks **netpp** (network property protocol), therefore things can run anywhere.

- HDL-Simulation on powerful main frame
- Data routing from real world software on Windows PC to simulation
- Debugger (Laptop) connecting to any of the debug servers

Now, where's the bug?

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Distributed, virtual and real debugging of a MIPS SoC

- Bug could sit:
 - .. in peripheral access (HDL design), or the CPU
 - .. in SoC firmware (Code running on CPU core)
 - .. in host (PC) software

Now, where's the bug?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Distributed, virtual and real debugging of a MIPS SoC

- Bug could sit:
 - .. in peripheral access (HDL design), or the CPU
 - .. in SoC firmware (Code running on CPU core)
 - .. in host (PC) software
 - .. in Debugger components itself (reserve many gaelic curses)
 - .. between two human ears

Now, where's the bug?

Distributed, virtual and real debugging of a MIPS SoC

- Bug could sit:
 - .. in peripheral access (HDL design), or the CPU
 - .. in SoC firmware (Code running on CPU core)
 - .. in host (PC) software
 - .. in Debugger components itself (reserve many gaelic curses)
 - .. between two human ears
- Avoid to introduce bugs during development:
 - Verify CPU behaviour against **qemu** (functional simulation)
 - Keep device configuration in exactly one XML file
 - Use Makefile rules or similar to keep source and generated files in sync (\rightarrow GNU make)
 - Introduce detection mechanisms: ID codes or functionality descriptors (JTAG USERCODE register)

*ロ * * ● * * ● * * ● * ● * ● * ●

Martin Strube section5.ch

Demos:

- 1 Debugging the simulation
- 2 Debugging the hardware: HDR-60 FPGA camera kit
- 8 Verifying the CPU using qemu

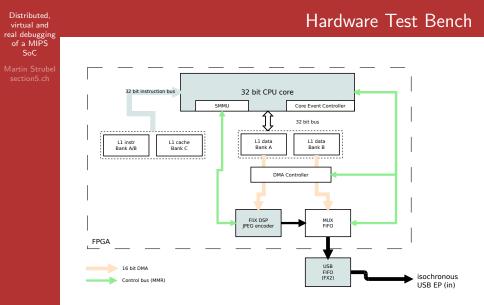


Figure: JPEG encoder test bench

*ロ * * ◎ * * ● * * ● * ● * * ● * * ● * * ● * * ● * * ● ● * ● * ● * ● * ● * ● * ● * ● * ● ● * ● ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● ● * ● ● * ● ● * ● ● * ● ● ● * ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Distributed, virtual and real debugging of a MIPS SoC

Martin Strubel section5.ch

- Questions?
- More about device hardware XML description:
 - $\rightarrow \, \mathsf{http://www.section5.ch/netpp}$
- Don't miss René's Introduction to his Mais MIPS core (later today in this session)

Thank you for listening!

www.section5.ch

The interface between the JTAG port and the CPU: a somewhat generic HDL library.

- Vendor independent interface ('standard' register set)
- Supports Xilinx and Lattice native JTAG components
- CPU core architecture independent
- Software support by emulation library (Python, uniproxy debug server)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Martin Strubel section5.ch

Register	Description	Signals
EMUSTAT	ICE and CPU state	emuack, emurdy, state
EMUCTRL	ICE control	emurequest, (emuexec)
EMUIR	ICE instruction register	32 bit (to core)
EMUDATA	ICE data register	32 bit (from core)

Table: TAP registers

Actual register addressing is TAP (FPGA family) specific