Distributed,
virtual and
real debugging
of a MIPS
SoC

Distributed, virtual and real debugging of a

MIPS SoC

Martin Strubel
sectionb.ch

02,/2013

Distributed,
virtual and
real debugging
of a MIPS
SoC

Martin Strubel
section5.ch

Flight plan

® Debugging a complex FPGA design (in theory)

e A SoC (System on Chip) example
e MAIS: A portable MIPS soft core by René Doss
e The Test Access Port (TAP): A generic debug interface

® Virtualizing the hardware

e 'Model in the loop’ techniques
e Making real software speak to virtual hardware

©® Demos

e Debugging the virtual chip
e Debugging the real hardware

Distributed,

virtual and The challenge

real debugging
of a MIPS

SoC Debug this:

Martin Strubel

section5.ch

]

i

h
1z
|l

” .
= - I
— | y— "

‘_E E"'-'- = o b o [e B
& ue = Mk -
= = ¥ - =

— ' s o —
: =14
o E 2

B
im;
i
e
L
[
{111 i
A s
i)
T
i

i

Figure: Somewhat unreadable schematic

Distributed, oo o

virtual and Divide et impera
real debugging

of a MIPS

SoC

Martin Strubel
sectionb.ch

CPU soft care

masterclock Dclk
U1 Test Access Port
To PC TCK 1 DTCK emurequestD—pemurequest io_busyG——
—— USB TMS 2 DTMS emuexecD——PDemuexec io_weD——
01 ——HTDI emuackg—-Llemuack fo_reD——
0 4 TDO emurdy——emurdy
5 D[0..31]——
TRST DIRST emuir[0..31)D—Pemuir[0..31] A[0..17]D——
JTAG
dbgpc[0..31]G—pc[0..31]
emudata[0..31] G——DEBUG[0..31]
ap.sch

cpu.sch

Figure: Simplified SoC schematic with Debug port

Distributed,
virtual and

real debugging
of a MIPS
SoC

Martin Strubel
section5.ch

Existing solutions

Proprietary solutions from various FPGA vendors:

| Signal inspection tool | Soft CPU core | Vendor |

ChipScope microblaze Xilinx
Reveal mico32 Lattice
SignalTap Niosl| Altera

Table: Tool examples

e Virtualization capabilities depend on second party

simulation tools ($$$-$$5$%)

e Debug port itself can sometimes not be simulated

Distributed,

virtual and
real debugging
of a MIPS
SoC

Martin Strubel
section5.ch

Existing solutions

Proprietary solutions from various FPGA vendors:

| Signal inspection tool | Soft CPU core | Vendor |

ChipScope microblaze Xilinx
Reveal mico32 Lattice
SignalTap Niosl| Altera

Table: Tool examples

e Virtualization capabilities depend on second party

simulation tools ($$$-$$5$%)
e Debug port itself can sometimes not be simulated

e No easy DIY virtualization of the hardware due to
proprietary and closed libraries.

Distributed,
virtual and
real debugging
of a MIPS
SoC

Martin Strubel
5.ch

The MIPS-compatible MAIS CPU

Introducing a soft cpu core may speed up proto-
typing/debugging.

(exercised previously with ZPU soft core)

Why MIPS?

e Well-established architecture with many derivatives
(Loongson SoC, Router chipsets)

e Fast, easy to implement, resource saving

e Actively maintained tool chain and emulators

Distributed,
virtual and
real debugging
of a MIPS
SoC

Martin Strubel
section5.ch

The MIPS-compatible MAIS CPU

Introducing a soft cpu core may speed up proto-
typing/debugging.

(exercised previously with ZPU soft core)

Why MIPS?

e Well-established architecture with many derivatives
(Loongson SoC, Router chipsets)

e Fast, easy to implement, resource saving

e Actively maintained tool chain and emulators

e MAIS design by René DoB:

e Well-portable MIPS 32 bit implementation
e Access to VHDL sources

irtat and In Circuit Emulation (ICE)

real debugging

of a MIPS
SoC
Martin Strubel CPU soft core
on5.ch masterclock A
UL Test Access Port
To PC ek L TCK emurequestD—pemurequest io_busy——
——use TMs |2 ™S emuexecD—PDemuexec io_weD——
T0I z 101 emuackg—(Jemuack io_reD——
00 TDO emurdy ——Jemurdy
s D[0..31)——
TRST U emuir[0..31] D—pPemuir[0..31] Af0.17]0——
JTAG

dbgpc[0..31]—pc(0..31]
emudata[0..31] G—QADEBUG[0..31]

ap-sch

Cpu-sCh

In emulation mode, the CPU...
o takes opcodes from the EMUIR register
o executes them when it gets an emuexec pulse

e exchanges data with the debugger via the EMUDATA
register

irtat and In Circuit Emulation (ICE)

real debugging

of a MIPS
SoC
CPU soft core
tin Strubel masterclock clk
onb5.ch
UL Test Access Port
To PC ek L TCK emurequestD—emurequest io_busyG——
——use TMs |2 ™S emuexecD—Ppemuexec io_weD——
oI —3 101 emuackg—(Jemuack io_reD——
00 |—4 Q700 emurdyG——emurdy
5 D[0..31)——
TRST TRST) emuir[0..31] D—pPemuir[0..31] Af0..17]0——
JTAG

dbgpc[0..31] G—LKpc[0..31]
emudata[0..31] G—DEBUG[0..31]

ap.sch

cpu.sch

In emulation mode, the CPU...
e takes opcodes from the EMUIR register
e executes them when it gets an emuexec pulse

e exchanges data with the debugger via the EMUDATA
register

Full remote control of the CPU via a test access port (TAP)!

Distributed,
virtual and

Debugger components
real debugging
of a MIPS

SoC

Martin Strubel
sectionb.ch

Elo Bun Wow Cortd Proloemes Holp

FOC G SASe 8T | W
o g

[<

@ The developer's front end: : -

succossfull = os wou oon see 1)

The GNU debugger (gdb) s

1 DVILER 10 BHARSTE)

s
[Frogram not ruing. Giok on un e fo sfat Fradchze | 114

Figure: GDB

Debugger connects to back end via a TCP remote debugging
protocol. Means: Distributed across networks!

Distributed, Debugger com ponents

virtual and
real debugging
of a MIPS

SoC

Elo Bun Wow Cortd Proloemes Holp |

FOC G SASe 8T | W

@ The developer's front end: & ‘
The GNU debugger (gdb) ELE T
® The back ends:
@ uniproxy: a JTAG
debug server
® qemu: a MIPS CPU

emulator

Fradchze | 114

Figure: GDB and uniproxy

Debugger connects to back end via a TCP remote debugging
protocol. Means: Distributed across networks!

Distributed,
virtual and
real debugging
of a MIPS
SoC

Martin Strubel
section5.ch

Debugger components

@ The developer's front end:
The GNU debugger (gdb)
® The back ends:
@ uniproxy: a JTAG
debug server
® qemu: a MIPS CPU
emulator
©® JTAG debugger hardware:
USB JTAG adapter Figure: ICEbear JTAG adapter

Debugger connects to back end via a TCP remote debugging
protocol. Means: Distributed across networks!

Distributed,

wirtual and Virtualize the hardware

real debugging
of a MIPS
SoC

Martin Strubel

e gemu: software-emulated MIPS CPU — a functional
model

e Write C code to functionally emulate attached hardware

Distributed,

wirtual and Virtualize the hardware

real debugging
of a MIPS
SoC

e gemu: software-emulated MIPS CPU — a functional
model

e Write C code to functionally emulate attached hardware
e VHDL simulation: cycle accurate — a timing model

e Typically: Simulation of logical behaviour
e Somewhat precise waveform output

Distributed,

wirtual and Virtualize the hardware

real debugging
of a MIPS
SoC

Martin Strubel
section5.ch

e VHDL simulation: cycle accurate — a timing model

e Typically: Simulation of logical behaviour
e Somewhat precise waveform output

Signals Wave
Time

emudata[31:0]
emuir[31:0]

emuexec =

emuack =

emurdy =i

emureg =

pel3L:0] =

core_clock =

Figure: Timing accurate simulation

Distributed,
virtual and
real debugging
of a MIPS
SoC

e Make antz meet...

section5.ch

Drawing by Britta Schneider

Make ants meet

irtual and Now seriously: make ends meet
real debugging
of a MIPS

SoC Task: Make real world software speak to virtual hardware.

w device GHDLSimInterface + « & # A x +

id [ghdisim
name |GHDLSimInterface
Result: ghdlex Opensource protocol) REGISTER @ PROPERTY () COMMAND

|>revi5mn o F N AKX \

simulator extension library:

A (wirtusl) register map:

° Descrlbe Virtual boa rd in ['» registermap FPGA_Registers & ¢ & » &+ x_+ |
w group VirtualPins «+ ¢ ¢ » 2 x +
XML — name |VirtualPins
. \ » property Enable .+ ¢+ & # % x + |
e Attach virtual components
‘ » property Reset .+ & & »2 x + |
n HDL deSIgnZ ‘ » property Timeout o+ <« ¢ » 3 x + |
‘ » property Throttle ¢ & » 2 x + |
¢ JI;I—AGd dISZL'l\%ger \ b propertylrg o+ ¢+ & o 3 x + |
® share
» group Virtual)TAG =+ < & & % x +
o USB Fl FO name [virtualTAG
o I/O pins, registers [y struct Fifo = <« 3 » » x +

Figure: XML hardware description

Distributed '
el et Virtual Hardware
real debugging
of a MIPS
SoC

rtin Strubel Virtual Hardware | Client/Driver Software

tion5.ch

GNU debugger
ghdlex library |
: | User program
netpp.vpi
T
Virtual pins i Virtual RAM
e] | Virtual hardware Virtual
driver JTAG debugger
VHDL-Simulation,
unit under test
netpp client
JTAG processor Virtual
(VHDL) USB-FIFO [

Distributed '
el et Virtual Hardware
real debugging
of a MIPS
SoC |

Virtual Hardware Client/Driver Software

n Strubel

section5.ch

GNU debugger
ghdlex library |
; | User program
netpp.vpi
T
Virtual pins i Virtual RAM
R I | Virtual hardware Virtual
driver JTAG debugger
VHDL-Simulation,
unit under test
netpp client
JTAG processor Virtual
(VHDL) USB-FIFO [

Expose design components to the network!

Distributed,
virtual and
real debugging
of a MIPS
SoC

Martin Strubel
sectionb.ch

Distributed processing

=== 1 JTAG l

G |:| Embedded device
amera =

(Data acquisition)

Windows PC,
Driver software

=
I

Developer,
Debugger front end Simulation

ghdlex speaks netpp (network property protocol), therefore
things can run anywhere.

e HDL-Simulation on powerful main frame

e Data routing from real world software on Windows PC to
simulation

o Debugger (Laptop) connecting to any of the debug servers

Distributed,
virtual and
real debugging
of a MIPS
SoC

Martin Strubel
sectionb.ch

Now, where's the bug?

e Bug could sit:

. in peripheral access (HDL design), or the CPU
. in SoC firmware (Code running on CPU core)
. in host (PC) software

Distributed,
virtual and
real debugging
of a MIPS
SoC

Martin Strubel

Now, where's the bug?

e Bug could sit:

. in peripheral access (HDL design), or the CPU

. in SoC firmware (Code running on CPU core)

. in host (PC) software

. in Debugger components itself (reserve many gaelic curses)
. between two human ears

irtual and Now, where's the bug?

real debugging

of a MIPS

e Bug could sit:

. in peripheral access (HDL design), or the CPU

. in SoC firmware (Code running on CPU core)

. in host (PC) software

. in Debugger components itself (reserve many gaelic curses)
. between two human ears

e Avoid to introduce bugs during development:

o Verify CPU behaviour against gemu (functional
simulation)

e Keep device configuration in exactly one XML file

e Use Makefile rules or similar to keep source and generated
files in sync (— GNU make)

e Introduce detection mechanisms: ID codes or functionality
descriptors (JTAG USERCODE register)

Distributed,
virtual and
real debugging
of a MIPS
SoC

Martin Strubel
sectionb.ch

Hands on!

Demos:
@ Debugging the simulation
® Debugging the hardware: HDR-60 FPGA camera kit
© Verifying the CPU using gemu

Distributed,

wirtual and Hardware Test Bench

real debugging

of a MIPS
SoC

Martin Strubel

section5.ch

32 bit instruction bus 32 bit CPU core

SMMU I | Core Event Controller

32 bit bus. |

| L1 data | | L1 data

Bank B

L1 instr L1 cache
Bank A/B Bank C

DMA Controller |

DSP . MUX
| JPEG encoder > FIFO |
16 bit DMA usB
FIFO .
Control bus (MMR) (Fx2) h isochronous
USB EP (in)

Figure: JPEG encoder test bench

Distributed,

virtual and Flnal nOteS

real debugging

of a MIPS

e Questions?

e More about device hardware XML description:
— http://www.section5.ch/netpp

e Don’t miss René's Introduction to his Mais MIPS core
(later today in this session)

Thank you for listening!

www.sectionb.ch

http://www.section5.ch/netpp

Distributed,
virtual and
real debugging
of a MIPS
SoC

Martin Strubel
section5.ch

StdTAP: The 'standard test access port’

The interface between the JTAG port and the CPU: a
somewhat generic HDL library.

¢ Vendor independent interface ('standard’ register set)
e Supports Xilinx and Lattice native JTAG components
e CPU core architecture independent

e Software support by emulation library (Python, uniproxy
debug server)

Distributed,
virtual and
real debugging
of a MIPS
SoC

Martin Strubel
section5.ch

TAP registers

| Register | Description | Signals |
EMUSTAT | ICE and CPU state emuack, emurdy, state
EMUCTRL | ICE control emurequest, (emuexec)
EMUIR ICE instruction register | 32 bit (to core)
EMUDATA | ICE data register 32 bit (from core)

Table: TAP registers

(@& Actual register addressing is TAP (FPGA family)
specific

